Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.981
Filtrar
1.
Infect Genet Evol ; 120: 105584, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38521481

RESUMO

Management of Dermanyssus gallinae, a cosmopolitan hematophagous mite responsible for damage in layer poultry farming, is hampered by a lack of knowledge of its spatio-temporal population dynamics. Previous studies have shown that the circulation of this pest between farms is of strictly anthropogenic origin, that a mitochondrial haplogroup has been expanding on European farms since the beginning of the 21st century and that its local population growth may be particularly rapid. To refine our understanding of how D. gallinae spreads within and among farms, we characterized the genetic structure of mite populations at different spatial scales and sought to identify the main factors interrupting gene flow between poultry houses and between mitochondrial haplogroups. To this end, we selected and validated the first set of nuclear microsatellite markers for D. gallinae and sequenced a region of the CO1-encoding mitochondrial gene in a subsample of microsatellite-genotyped mites. We also tested certain conditions required for effective contamination of a poultry house through field experimentation, and conducted a survey of practices during poultry transfers. Our results confirm the role of poultry transport in the dissemination of mite populations, but the frequency of effective contamination after the introduction of contaminated material into poultry houses seems lower than expected. The high persistence of mites on farms, even during periods when poultry houses are empty and cleaned, and the very large number of nodes in the logistic network (large number of companies supplying pullets or transporting animals) undoubtedly explain the very high prevalence on farms. Substantial genetic diversity was measured in farm populations, probably as a result of the mite's known haplodiploid mode of sexual reproduction, coupled with the dense logistic network. The possibility of the occasional occurrence of asexual reproduction in this sexually reproducing mite was also revealed in our analyses, which could explain the extreme aggressiveness of its demographic dynamics under certain conditions.


Assuntos
Repetições de Microssatélites , Infestações por Ácaros , Ácaros , Animais , Ácaros/genética , Infestações por Ácaros/veterinária , Infestações por Ácaros/parasitologia , Doenças das Aves Domésticas/parasitologia , Galinhas/parasitologia , Aves Domésticas/parasitologia , Fazendas , Fluxo Gênico , Haplótipos , Variação Genética
2.
Exp Parasitol ; 259: 108712, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38336093

RESUMO

Chicken coccidiosis, which caused by Eimeria spp, is a parasitic protozoal disease. At present, control measures of this disease depend mainly on anticoccidial drugs and live vaccines. But these control strategies have drawbacks such as drug resistance and limitations in live vaccines production. Therefore, novel control approaches are urgently need to study to control this disease effectively. In this study, the function and characteristics of the pyrroline-5-carboxylate reductase of Eimeria tenella (EtPYCR) protein were preliminary analyzed. The transcription and translation level were analyzed by using qPCR and Western blot. The results showed that the mRNA transcription and translation levels of EtPYCR were higher in unsporulated oocysts (UO) and second generation merozoites (Mrz) than that in sporulated oocysts (SO) and sporozoites. Enzyme activity showed that the enzyme activity of EtPYCR was also higher in the UO and Mrz than that in the SO and sporozoites. Immunofluorescence localization showed EtPYCR was mainly located on the top of sporozoites and the whole cytoplasm and surface of Mrz. The secretion assay indicated that EtPYCR was secretion protein, but not from micronemes. Invasion inhibition assay showed that rabbit anti-rEtPYCR polyclonal antibodies can effectively inhibit sporozoite invasion of DF-1 cells. These results showed that EtPYCR possess several important roles that separate and distinct from its conversion 1-pyrroline-5-carboxylate (P5C) into proline and maybe involved in the host cell invasion and development of parasites in host cells.


Assuntos
Coccidiose , Eimeria tenella , Doenças das Aves Domésticas , Pirróis , Vacinas , Animais , Coelhos , Proteínas de Protozoários , Clonagem Molecular , Galinhas/parasitologia , Esporozoítos , Oocistos , Coccidiose/parasitologia , Oxirredutases/metabolismo , Doenças das Aves Domésticas/parasitologia
3.
Vet Parasitol ; 327: 110131, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38301346

RESUMO

Eimeria tenella infections are known to cause severe caecal damage and death of the infected chicken. Gamogony is an essential stage in E. tenella life cycle and in the establishment of coccidiosis. Prior research had extensively explored isolation and separation of the parasite gametes - microgamete (male) and macrogamete (female). However, there is little information on the efficient, highly purified and distinctly separated male and female gametes. In this study, we generated a genome editing line expressing mCherry fluorescent protein fused with GCS1 protein in E. tenella by using Toxoplasma gondii CRISPR-Cas9 system, flow cytometry and fluorescence microscopy. This allowed precise separation of E. tenella male and female gametes in the transgenic parasite population. The separation of male and female gametes would not only build on our understanding of E. tenella transmission, but it would also facilitate development of gametocidal compounds as drug targets for E. tenella infection.


Assuntos
Coccidiose , Eimeria tenella , Doenças das Aves Domésticas , 60598 , Feminino , Masculino , Animais , Eimeria tenella/genética , Sistemas CRISPR-Cas , Coccidiose/genética , Coccidiose/veterinária , Estágios do Ciclo de Vida , Galinhas , Doenças das Aves Domésticas/parasitologia
4.
Parasitology ; 151(4): 363-369, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38379406

RESUMO

Toxoplasma gondii has at least 318 genotypes distributed worldwide, and tropical regions usually have greater genetic diversity. Campeche is a state located in the southeastern region of México and has favourable climate conditions for the replication and dissemination of this protozoan, similar to those in South American countries where broad genetic diversity has been described. Thus, in this study, 4 T. gondii isolates were obtained from tissues of stray dogs and free-range chickens in Campeche, México, and were genotyped by Mn-PCR-RFLP with 10 typing markers (SAG1, altSAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1 and Apico) and 5 virulence markers (CS3, ROP16, ROP17, ROP18 and ROP5) to provide new information about the distribution and virulence prediction of T. gondii genotypes. Two isolates of T. gondii genotype #116 and 2 of genotype #38 were obtained from stray dogs and chickens, respectively. The parasite load found in these species was between <50 and more than 35 000 tachyzoites per mg of tissue. Virulence marker genotyping revealed a recombinant 1&3 ROP5 RFLP pattern in 2 ToxoDB #116 isolates with no prediction of virulence in a murine model, while in the 2 ToxoDB #38 isolates, the ROP18/ROP5 combination predicted high virulence. Considering all the typed markers, there is a predominance of type I and III alleles, as constantly reported for the isolates characterized in various regions of México. It is crucial to determine their phenotype to corroborate the genetic virulence profile of the T. gondii isolates obtained in this study.


Assuntos
Galinhas , Genótipo , Doenças das Aves Domésticas , Proteínas de Protozoários , Toxoplasma , Toxoplasmose Animal , Animais , México/epidemiologia , Toxoplasma/genética , Toxoplasma/patogenicidade , Toxoplasma/classificação , Toxoplasma/isolamento & purificação , Galinhas/parasitologia , Toxoplasmose Animal/parasitologia , Virulência , Cães , Proteínas de Protozoários/genética , Camundongos , Doenças das Aves Domésticas/parasitologia , Polimorfismo de Fragmento de Restrição , Doenças do Cão/parasitologia , Alelos
5.
Vet Parasitol ; 327: 110141, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367528

RESUMO

Eimeria tenella is the most pathogenic and harmful intestinal parasitic protozoan. Recombinant DNA vaccines open options for promising strategies for preventing avian coccidiosis, replacing chemical drugs and live oocyst vaccines. Two important antigenic proteins, EtAMA3 (also known as SporoAMA1) and EtRON2L2, act together to promote the invasion of E. tenella sporozoites. In this study, a recombinant DNA vaccine, designated pcDNA3.1(+)-AR, was constructed based on EtAMA3DII, EtRON2L2D3, and EtRON2L2D4. Chickens were intramuscularly immunized with different doses (25, 50, or 100 µg) of pcDNA3.1(+)-AR to evaluate its immunoprotective effects in vivo. The chickens in the 50 µg and 100 µg groups had higher cytokine concentrations (interleukin 2, interferon-gamma, and interleukin 10), and lesion scores (81.9% and 67.57%, respectively) and relative oocyst production (47% and 19%, respectively) reduced compared with the unchallenged group, indicating partial protection against E. tenella. These results suggest that pcDNA3.1(+)-AR is a promising vaccine candidate against avian coccidiosis.


Assuntos
Coccidiose , Eimeria tenella , Doenças das Aves Domésticas , Vacinas Protozoárias , Vacinas de DNA , Animais , Galinhas/parasitologia , Coccidiose/prevenção & controle , Coccidiose/veterinária , Proteínas Recombinantes , Oocistos , Doenças das Aves Domésticas/parasitologia
6.
Microb Pathog ; 188: 106549, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38281605

RESUMO

The five epidermal growth factor-like domains (EGF) of Eimeria tenella microneme protein 8 (EtMIC8) (EtMIC8-EGF) plays a vital role in host cell attachment and invasion. These processes require interactions between parasite proteins and receptors on the surface of host cells. In this study, five chicken membrane proteins potentially interacting with EtMIC8-EGF were identified using the GST pull-down assay and mass spectrometry analysis, and only chicken (Gallus gallus) epithelial cell adhesion molecule (EPCAM) could bind to EtMIC8-EGF. EPCAM-specific antibody and recombinant EPCAM protein (rEPCAM) inhibited the EtMIC8-EGF binding to host cells in a concentration-dependent manner. Furthermore, the rEPCAM protein showed a binding activity to sporozoites in vitro, and a significant reduction of E. tenella invasion in DF-1 cells was further observed after pre-incubation of sporozoites with rEPCAM. The specific anti-EPCAM antibody further significantly decreased weight loss, lesion score and oocyst output during E. tenella infection, displaying partial inhibition of E. tenella infection. These results indicate that chicken EPCAM is an important EtMIC8-interacting host protein involved in E. tenella-host cell adhesion and invasion. The findings will contribute to a better understanding of the role of adhesion-associated microneme proteins in E. tenella.


Assuntos
Coccidiose , Eimeria tenella , Doenças das Aves Domésticas , Animais , Eimeria tenella/química , Eimeria tenella/metabolismo , Molécula de Adesão da Célula Epitelial/metabolismo , Galinhas , Proteínas de Protozoários , Fator de Crescimento Epidérmico/metabolismo , Proteínas Recombinantes , Esporozoítos/metabolismo , Coccidiose/veterinária , Coccidiose/parasitologia , Doenças das Aves Domésticas/parasitologia
7.
Poult Sci ; 103(1): 103227, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38041891

RESUMO

The chicken business faces substantial economic losses due to the risk of parasitic coinfection. Because the current study aimed to investigate enteric parasitic coinfections problems among the suspected examined chicken farms, samples were collected during the field investigation from suspected freshly dead birds, clinically diseased, apparently healthy, and litter samples for further laboratory parasitological, histopathological, and immunological examinations. Variable mortalities with various clinical indicators, such as ruffled feathers, weight loss, diarrhea of various colors, and a decline in egg production, occurred on the farms under investigation. In addition, the treatment protocols of each of the farms that were evaluated were documented and the m-RNA levels of some cytokines and apoptotic genes among the infected poultry have been assessed. The prevalence rate of parasitic coinfection in the current study was found to be 8/120 (6.66%). Parasitological analysis of the samples revealed that they belonged to distinct species of Eimeria, cestodes, and Ascaridia galli. When deposited, A. galli eggs were nonembryonated and ellipsoidal, but cestodes eggs possessed a thin, translucent membrane that was subspherical. Eimeria spp. oocysts in layer chickens were identified as Eimeria acervulina and Eimeria maxima in broiler chickens. Our findings proved that coinfection significantly upregulated the IL-1ß, BAX, and Cas-3 genes. Conversely, the IL-10, BCL-2, and AKT mRNA levels were downregulated, indicating that nematode triggered apoptosis. The existence of parasite coinfection was verified by histological investigation of the various intestinal segments obtained from affected flocks. A. galli and cestodes obstructed the intestinal lumen, causing different histological alternations in the intestinal mucosa. Additionally, the lamina propria revealed different developmental stages of Eimeria spp. It was determined that parasite coinfection poses a significant risk to the poultry industry. It was recommended that stringent sanitary measures management methods, together with appropriate treatment and preventative procedures, be employed in order to resolve such issues.


Assuntos
Coccidiose , Coinfecção , Eimeria , Parasitos , Doenças das Aves Domésticas , Animais , Coccidiose/epidemiologia , Coccidiose/veterinária , Coccidiose/parasitologia , Galinhas/parasitologia , Coinfecção/epidemiologia , Coinfecção/veterinária , Doenças das Aves Domésticas/parasitologia , Óvulo , Eimeria/genética
8.
Rev Bras Parasitol Vet ; 32(4): e011123, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38055436

RESUMO

The objective of this study was to identify Eimeria spp. in alternative poultry production systems (APPS) in the State of São Paulo, Brazil. Fecal samples (168) and DNA extracted from fecal samples obtained in APPS located in different Municipalities in the State of São Paulo (93) were examined by microscopy or genera-specific PCR (ITS-1 locus). Samples positive for Eimeria spp. were examined using Eimeria lata, Eimeria nagambie, and Eimeria zaria species-specific PCR protocols (ITS-2 locus) and another E. lata-specific PCR (candidate IMP1 genomic locus) followed by molecular cloning (E. lata and E. zaria ITS-2 amplicons) and genetic sequencing. All positive DNA samples were also submitted to genera-specific nested PCR (18S rRNA gene) followed by next-generation sequencing to identify Eimeria spp. Eimeria nagambie, E. zaria, and Eimeria sp. were identified by ITS2-targeted species-specific PCRs and genetic sequencing. Next-generation sequencing identified, in order of prevalence: E. nagambie; Eimeria acervulina; Eimeria mivati; Eimeria praecox; Eimeria brunetti; Eimeria mitis; Eimeria sp.; Eimeria maxima; E. zaria, and Eimeria necatrix/tenella. Our results confirmed, for the first time in Brazil, the identification of E. nagambie, E. zaria, and Eimeria spp. ITS-2 and 18S rRNA gene sequences not yet described in Brazil.


Assuntos
Coccidiose , Eimeria , Doenças das Aves Domésticas , Animais , Eimeria/genética , Coccidiose/diagnóstico , Coccidiose/epidemiologia , Coccidiose/veterinária , Galinhas/parasitologia , Brasil , Aves Domésticas/genética , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/parasitologia , Nigéria , DNA de Protozoário/genética
9.
Front Cell Infect Microbiol ; 13: 1305727, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38116134

RESUMO

Introduction: Apicomplexan AP2 family of proteins (ApiAP2) are transcription factors (TFs) that regulate parasite growth and development, but little is known about the ApiAP2 TFs in Eimeria spp. ENH_00027130 sequence is predicted to encode a Eimeria necatrix ApiAP2 protein (EnApiAP2). Methods: The cDNAs encoding full-length and truncated EnApiAP2 protein were cloned and sequenced, respectively. Then, the two cDNAs were cloned into the pET28a(+) expression vector and expressed expressed in Escherichia coli BL21. The mouse polyclonal antibody (pAb) and monoclonal antibody (mAb) against recombinant EnApiAP2 (rEnApiAP2) and EnApiAP2tr (rEnApiAP2tr) were prepared and used to localize the native EnApiAP2 protein in E. necatrix, respectively. Finally, the recombinant pEGFP-C1-ΔNLS-EnApiAP2s (knockout of a nuclear localization sequence, NLS) and pEGFP-C1-EnApiAP2 plasmid were constructed and transfected into DF-1 cells, respectively, to further observe subcellular localization of EnApiAP2 protein. Results: The EnApiAP2 gene had a size of 5019 bp and encoded 1672 amino acids, containing a conserved AP2 domain with a secondary structure consisting of an α-helix and three antiparallel ß-strands. The rEnApiAP2 and rEnApiAP2tr were predominantly expressed in the form of inclusion bodies, and could be recognized by the 6×His tag mAb and the serum of convalescent chickens after infection with E. necatrix, respectively. The native EnApiAP2 protein was detected in sporozoites (SZ) and second generation merozoites (MZ-2) extracts, with a size of approximately 210 kDa. A quantitative real-time PCR (qPCR) analysis showed that the transcription level of EnApiAP2 was significantly higher in SZ than in MZ-2, third generation merozoites (MZ-3) and gametocytes (P<0.01). EnApiAP2 protein was localized in the nuclei of SZ, MZ-2 and MZ-3 of E. necatrix. The protein of EnApiAP2 was localized in the nucleus of the DF-1 cells, whereas the ΔNLS-EnApiAP2 was expressed in the cytoplasm, which further confirmed that EnApiAP2 is nucleoprotein. Discussion: EnApiAP2 protein encoded by ENH_00027130 sequence was localized in the nucleus of E. necatrix parasites, and relied on the NLS for migration to DF-1 cell nucleus. The function of EnApiAP2 need further study.


Assuntos
Eimeria , Doenças das Aves Domésticas , Animais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Galinhas/genética , DNA Complementar/genética , Eimeria/genética , Eimeria/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas Nucleares/metabolismo , Doenças das Aves Domésticas/parasitologia , Esporozoítos/metabolismo
10.
Vet Parasitol ; 324: 110068, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37931476

RESUMO

The global poultry industry has experienced dramatic growth in recent decades, increasing the significance of pathogens of chickens. Protozoan parasites of the genus Eimeria can cause the disease coccidiosis, compromising animal health and welfare, and incurring significant annual costs. Seven Eimeria species have long been recognised to infect chickens, supplemented by three new candidate species first reported from Australia in 2007/8. Named Eimeria lata, Eimeria nagambie and Eimeria zaria, one or more of these new species have been reported in Australia, several countries in sub-Saharan Africa, India, Venezuela, and most recently the United States of America, but none have been detected in Europe. Here, a panel of 56 unvaccinated broiler chicken farms were sampled in the final week of production from France, Greece, Italy, the Netherlands, the Republic of Ireland, and the United Kingdom to assess the occurrence of all ten Eimeria species using specific polymerase chain reaction (PCR). Overall, 39 of 56 (69.6%) farms were found to host at least one species. Eimeria acervulina, E. tenella, and E. maxima were most common, with E. mitis and E. praecox also widespread. Eimeria necatrix was detected on one farm in France, while E. brunetti was not detected. Eimeria zaria was detected for the first time in Europe, appearing in Greece and Italy (one occurrence each). New primers were designed to confirm detection of E. zaria and provide template for phylogenetic comparison with the reference isolate from Australia. Detection of E. zaria in Europe reinforces the importance of integrated control for coccidiosis given the lack of protection induced by current anticoccidial vaccines.


Assuntos
Coccidiose , Eimeria , Doenças das Aves Domésticas , Animais , Galinhas/parasitologia , Filogenia , Doenças das Aves Domésticas/parasitologia , Nigéria , Coccidiose/epidemiologia , Coccidiose/veterinária , Coccidiose/parasitologia
11.
Vet Parasitol ; 324: 110060, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37931477

RESUMO

Eimeria necatrix is a high pathogenic pathogen, which seriously endangers the poultry industry. The surface antigens (SAGs) of Apicomplexa are a kind of membrane protein anchored on the surface of the parasites through its carboxyl terminal glycosylphosphatidylinositol (GPI) structure. However, little is known about GPI-linked surface proteins in E. necatrix. In the present work, the E. necatrix sag gene (Ensag-CAP) was amplified and cloned for expression of the recombinant protein (rEnSAG-CAP). The full length Ensag-CAP gene was 813 bp, coding 270 amino acids with a predicated molecular weight of 28.86 kDa and contained a CAP domain with four sequence motifs CAP1, CAP2, CAP3 and CAP4. The rEnSAG-CAP was about 32 kDa and mainly expressed in a soluble form. Western blot analysis indicated that the rEnSAG-CAP could be recognized by anti-rEnSAG-CAP monoclonal antibody (anti-rEnSAG-CAP McAb) and the convalescent serum of chicken infected with E. necatrix. Native protein of EnSAG-CAP was detected in second-generation merozoites (MZ-2) using anti-rEnSAG-CAP polyclonal antibody (anti-rEnSAG-CAP pAb). The findings from the indirect immunofluorescence assay and enzyme digestion utilizing Bacillus cereus phosphoinositide-specific phospholipase C (PI-PLC) revealed that EnSAG-CAP predominantly localized at the surfaces of SZ and MZ-2 via a GPI anchor. It was observed that EnSAG-CAP can be cleaved from MZ-2 by PI-PLC. Real-time quantitative PCR (qPCR) analysis showed that transcript levels of Ensag-CAP in MZ-2 was significantly higher than that in SZ (P < 0.05). The anti-rEnSAG-CAP McAb in vitro could significantly inhibit the sporozoite invasion into MDBK cells (P < 0.01), which suggests that the protein might participate in sporozoite invasion into MDBK cells. rEnSAG-CAP afforded an immune protection against E. necatrix. The ACI value was 164.99 in the chickens immunized with 200 µg rEnSAG-CAP. Chickens immunized with rEnSAG-CAP had a significantly higher antigen-specific serum IgY response (P < 0.0001). The data indicates that EnSAG-CAP could serve as a potential candidate antigen for the development of a recombinant coccidiosis vaccine.


Assuntos
Coccidiose , Eimeria , Doenças das Aves Domésticas , Animais , Eimeria/fisiologia , Galinhas/parasitologia , Coccidiose/prevenção & controle , Coccidiose/veterinária , Proteínas Recombinantes/genética , Esporozoítos , Vacinas Sintéticas , Doenças das Aves Domésticas/parasitologia
12.
Parasit Vectors ; 16(1): 365, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848977

RESUMO

BACKGROUND: Protozoan parasites of the genus Eimeria are the causative agents of chicken coccidiosis. Parasite resistance to most anticoccidial drugs is one of the major challenges to controlling this disease. There is an urgent need for a molecular marker to monitor the emergence of resistance against anticoccidial drugs, such as decoquinate. METHODS: We developed decoquinate-resistant strains by successively exposing the Houghton (H) and Xinjiang (XJ) strains of E. tenella to incremental concentrations of this drug in chickens. Additionally, we isolated a decoquinate-resistant strain from the field. The resistance of these three strains was tested using the criteria of weight gain, relative oocyst production and reduction of lesion scores. Whole-genome sequencing was used to identify the non-synonymous mutations in coding genes that were highly associated with the decoquinate-resistant phenotype in the two laboratory-induced strains. Subsequently, we scrutinized the missense mutation in a field-resistant strain for verification. We also employed the AlphaFold and PyMOL systems to model the alterations in the binding affinity of the mutants toward the drug molecule. RESULTS: We obtained two decoquinate-resistant (DecR) strains, DecR_H and XJ, originating from the original H and XJ strains, respectively, as well as a decoquinate-resistant E. tenella strain from the field (DecR_SC). These three strains displayed resistance to 120 mg/kg decoquinate administered through feed. Through whole-genome sequencing analysis, we identified the cytochrome b gene (cyt b; ETH2_MIT00100) as the sole mutated gene shared between the DecR_H and XJ strains and also detected this gene in the DecR_SC strain. Distinct non-synonymous mutations, namely Gln131Lys in DecR_H, Phe263Leu in DecR_XJ, and Phe283Leu in DecR_SC were observed in the three resistant strains. Notably, these mutations were located in the extracellular segments of cyt b, in close proximity to the ubiquinol oxidation site Qo. Drug molecular docking studies revealed that cyt b harboring these mutants exhibited varying degrees of reduced binding ability to decoquinate. CONCLUSIONS: Our findings emphasize the critical role of cyt b mutations in the development of decoquinate resistance in E. tenella. The strong correlation observed between cyt b mutant alleles and resistance indicates their potential as valuable molecular markers for the rapid detection of decoquinate resistance.


Assuntos
Coccidiose , Decoquinato , Eimeria tenella , Parasitos , Doenças das Aves Domésticas , Animais , Eimeria tenella/genética , Decoquinato/farmacologia , Citocromos b/genética , Galinhas/parasitologia , Mutação de Sentido Incorreto , Simulação de Acoplamento Molecular , Resistência a Medicamentos/genética , Coccidiose/veterinária , Coccidiose/parasitologia , Mutação , Doenças das Aves Domésticas/parasitologia
13.
Poult Sci ; 102(12): 103111, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37866222

RESUMO

Nanomedicine is a critical therapeutic approach for treating most poultry illnesses, particularly parasitic infections. Coccidiosis is a severe protozoan infection affecting poultry; the emergence of drug-resistant Eimeria strains demands the development of new, safe therapies. Consequently, the objective of this work was to investigate the efficacy of the biosynthesized selenium nanoparticles (SeNPs) by Paenibacillus polymyxa (P. polymyxa) against Eimeria tenella (E. tenella) experimental infection in broiler chickens. The prepared SeNPs absorbed the UV at 270 nm were spherical with a size of 26 nm, and had a surface negative charge of -25 mV. One hundred and fifty, 1-day-old male broiler chicks were randomly allocated into 5 groups (30 birds/group with triplicates each) as follows: T1: negative control (noninfected and nontreated with SeNPs); T2: delivered SeNPs (500 µg/kg diet) for 35 successive days, T3: E. tenella-infected (positive control birds), T4: E. tenella-infected and treated with SeNPs (500 µg/kg diet) and T5: E. tenella-infected chicks and treated with anticoccidial agent (sulfadimidine, 16% solution 8 mL/L of drinking water) for 5 successive days. At 14 d of age, each bird in infected groups was orally treated with 3 × 103 sporulated oocyst of E. tenella. SeNPs considerably decreased the number of oocysts in broiler feces compared to positive control and anticoccidial drug, followed by a substantial reduction of parasite phase count in the cecum (15, 10, and 8 for meronts, gamonts, and developing oocysts) when compared with positive control birds. The Eimeria experimental infection lowered the activity of antioxidant enzymes, superoxide dismutase (SOD), glutathione peroxidase (GPx), and reduced glutathione (GSH) while increasing the stress parameters nitric oxide (NO) and malonaldehyde (MDA). Moreover, the production of proinflammatory (TNF-α and IL-6) and apoptotic genes (BcL2 and Cas-3) were significantly elevated. Administrating SeNPs to chicks significantly decreased oxidative stress, inflammation, and apoptotic markers in the cecum tissue. Therefore, growth performance, carcass weights, antioxidant enzymes, and blood properties of infected chicks were enhanced. The findings compared the protecting role of Se-nanoparticles against cecum damages in E. tenella-infected broilers.


Assuntos
Coccidiose , Eimeria tenella , Eimeria , Doenças das Aves Domésticas , Selênio , Animais , Masculino , Galinhas , Antioxidantes , Coccidiose/parasitologia , Coccidiose/veterinária , Dieta/veterinária , Ceco , Doenças das Aves Domésticas/tratamento farmacológico , Doenças das Aves Domésticas/parasitologia , Oocistos
14.
Poult Sci ; 102(11): 102975, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37708766

RESUMO

Magnolol, a natural extract from magnolia officinalis, has received growing interest in its bioactive properties such as antioxidant, anti-inflammatory, and antibacterial activities. Nevertheless, there is little research on Magnolol in the treatment of parasitic infections currently. Eimeria tenella (E. tenella) infection causes damage to epithelial cells and cecal mucosa, resulting in increased intestinal permeability, which is pretty detrimental to the balance of the intestinal microenvironment. However, at present, in the treatment of chicken coccidiosis, the abuse of antibiotics is quite serious, which has brought losses and harms to the chicken farming industry that cannot be ignored. In this study, based on the excellent antioxidant and anti-inflammatory properties of Magnolol, we proved that it does have a desirable therapeutic potential on chicks infected with E. tenella. Actually, the results showed that the clinical symptoms of the chicks infected with E. tenella were relieved and their growth performance was restored by Magnolol treatment. Furthermore, Magnolol improved the antioxidant and anti-inflammatory properties of chicks. Meanwhile, the Magnolol reversed the imbalance of the intestinal microbiota of sick chicks, which recovered the diversity, promoted the potential beneficial bacteria, and inhabited the potential pathogenic bacteria. Overall, Magnolol may be an alternative to chemical drugs that are effective in treating E. tenella infections.


Assuntos
Coccidiose , Eimeria tenella , Microbioma Gastrointestinal , Doenças das Aves Domésticas , Animais , Antioxidantes/uso terapêutico , Galinhas/parasitologia , Coccidiose/tratamento farmacológico , Coccidiose/veterinária , Coccidiose/microbiologia , Doenças das Aves Domésticas/tratamento farmacológico , Doenças das Aves Domésticas/parasitologia
15.
Trends Parasitol ; 39(12): 1087-1099, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37770352

RESUMO

Chicken coccidiosis, caused by infection with single or multiple Eimeria species, results in significant economic losses to the global poultry industry. Over the past decades, considerable efforts have been made to generate attenuated Eimeria strains, and the use of live attenuated anticoccidial vaccines for disease prevention has achieved tremendous success. In this review, we evaluate the advantages and limitations of the methods of attenuation as well as attenuated Eimeria strains in a historical perspective. Also, we summarize the recent exciting research advances in transient/stable transfection systems and clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing developed for Eimeria parasites, and discuss trends and challenges of developing live attenuated anticoccidial vaccines based on transgenesis and genome editing.


Assuntos
Coccidiose , Eimeria , Doenças das Aves Domésticas , Vacinas Protozoárias , Animais , Galinhas/parasitologia , Vacinas Atenuadas , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/parasitologia , Coccidiose/prevenção & controle , Coccidiose/veterinária , Eimeria/genética
16.
Vet Parasitol ; 321: 110003, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37586136

RESUMO

Coccidiosis is an acute gastrointestinal parasitic disease and causes approximately $2.80 to $3.27 per m2 loss in a broiler farm of a 33-day-old flock. In this study, iron oxide nanoparticles (IONPs) were green synthesized using the aqueous leaf extract of Ficus racemosa as a reducing and capping agent to reduce the emerging resistance in coccidia spores against conventional treatments and boost the immune level in broilers. These IONPs were evaluated for their impacts on the growth performance, biochemistry, blood profile, and histology in the coccidiodized broiler chicken with Emeria tenella under in vivo conditions. The characteristics and stability of particles were obtained using UV-Vis spectroscopy, Fourier transforms infrared (FTIR), X-Ray diffraction (XRD), energy dispersive X-ray absorption (EDX), scanning electron microscopy (SEM), zeta potential and zeta size. The results indicated that IONPs at the moderate dose of 15 mg/kg (p = 0.001) reduced the coccidial impacts by eliminating oocyst shedding per gram feces (up to 91%) and reducing clinical symptoms (lesions (LS = 0), bloody diarrhea (No), and mortality (0%) in chicken at day 10 of treatment as compared to the negative control group-B (infected & non-treated). A dose-dependent and time-dependent trend were observed during treatments (10, 15, and 20 mg/kg) of 1-3 weeks using IONPs against the coccidial impacts on the growth parameters (body weight gain, mean feed consumption, feed conversion ratio) and biochemistry (plasma glucose, total protein, uric acid, ALT, AST, and ALP) in chickens. Additionally, F. racemosa IONPs at a dose of 15 and 20 mg/kg significantly recovered the parasitized and highly damaged hepatocytes, liver tissues, and ceca tissues after 1-3 weeks of treatment in broiler chickens. Overall, the 15 mg/kg concentration of IONPs exhibited fast recovery and growth enhancement in coccidiodized broilers. Therefore, the 15 mg/kg dose of green synthesized IONPs using leaf extract of F. racemosa could be a potential and safe anticoccidial agent with targeted implications in the poultry industry.


Assuntos
Coccidiose , Eimeria tenella , Ficus , Nanopartículas , Doenças das Aves Domésticas , Animais , Galinhas/parasitologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Coccidiose/tratamento farmacológico , Coccidiose/prevenção & controle , Coccidiose/veterinária , Óxidos , Ferro/uso terapêutico , Doenças das Aves Domésticas/tratamento farmacológico , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/parasitologia
17.
Vet Parasitol ; 321: 110002, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37567028

RESUMO

Eimeria species are intracellular obligate parasites, among the most common pathogens affecting the intensive poultry industry. Oxidoreductases are members of a class of proteins with redox activity and are widely found in apicomplexan protozoans. However, there have been few reports related to Eimeria species. In this study, total RNA was extracted from the gametocytes of E. necatrix Yangzhou strain to amplify the EnOXIO1 gene using reverse-transcription polymerase chain reaction. After cloning and sequence analysis, the prokaryotic expression vector pET-28a(+)-EnOXIO1 was constructed and transformed into Escherichia coli BL21(DE3), and the recombinant protein rEnOXIO1 was expressed by induction with isopropyl ß-D-1-thiogalactopyranoside. The full length EnOXIO1 gene was 2535 bp encoding 844 amino acids, and the EnOXIO1 protein had a molecular weight of about 100 kDa and was mainly expressed in inclusion bodies. Western blot analysis indicated that the rEnOXIO1 protein had good antigenicity and cross-reactivity and was specifically recognized by a 6 ×HIS labeled monoclonal antibody, mouse anti-recombinant protein polyclonal antibody, and recovery serum from chickens infected with E. necatrix, E. acervulina, and E. tenella sporulated oocysts. The results of laser confocal immunofluorescence localization showed that the EnOXIO1 protein was mainly located on the wall-forming bodies in gametocytes and played an important role in the formation of the oocyst wall. Quantitative PCR analysis revealed that transcript levels of EnOXIO1 were highest in the gametocyte stage. Protein expression levels of EnOXIO1 were higher in the gametocyte stage than in other developmental stages according to western blot analysis. Vaccination of chickens against E. necatrix was achieved with recombinant protein rEnOXIO1, which triggered humoral immunity and antibody production, increased average body weight gain, reduced oocyst output and alleviated lesions after E. necatrix infection. The highest ACI value (172.36) was observed in chickens that received 200 µg rEnOXIO1 compared with other immunization groups.


Assuntos
Coccidiose , Eimeria tenella , Eimeria , Doenças das Aves Domésticas , Animais , Camundongos , Eimeria/genética , Metanol/metabolismo , Coccidiose/parasitologia , Coccidiose/veterinária , Proteínas de Protozoários/genética , Galinhas/parasitologia , Proteínas Recombinantes , Oocistos , Oxirredutases , Glucose/metabolismo , Doenças das Aves Domésticas/parasitologia
18.
Vet Parasitol ; 320: 109983, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37450962

RESUMO

Dermanyssus gallinae, the poultry red mite (PRM), is an obligate ectoparasite feeding on poultry blood, seriously affecting the health of layers and egg production. The control of PRMs mainly relies on chemical drugs, which is facing several challenges such as the environment pollution and drug resistance. Using fungal metabolites is an environmentally friendly alternative for the control of pests. However, few studies have been conducted on the efficacy of fungal metabolites against D. gallinae. In this study, five strains of fungi were isolated from D. gallinae under laboratory conditions, and their extracts with ethyl acetate were tested for acaricidal activity on D. gallinae. The crude extract of Aspergillus oryzae caused 75.55 ± 6.94% mortality of mites at a concentration of 12.5 mg/mL, showing the highest acaricidal effect in all extracts. Subsequently, the extract of A. oryzae was isolated by bio-guided fractionation, and ten major compounds were identified by LC-MS/MS analysis. The results of bioassays indicated that five compounds exhibited acaricidal activity against D. gallinae. N, N-dimethyldecylamine N-oxide was the optimal acaricidal compound with LC50 of 0.568 mg/mL. Additionally, palmitic acid, triethanolamine, cuminaldehyde, and 2,4-dimethylbenzaldehyde also showed acaricidal activity. These compounds have great application potential in the mite control, and the analysis of these fungal acaricidal substances provides a new idea and basis for the subsequent development of PRM control technology.


Assuntos
Acaricidas , Aspergillus oryzae , Infestações por Ácaros , Ácaros , Doenças das Aves Domésticas , Trombiculidae , Animais , Acaricidas/farmacologia , Aves Domésticas , Cromatografia Líquida/veterinária , Espectrometria de Massas em Tandem/veterinária , Doenças das Aves Domésticas/parasitologia , Galinhas/parasitologia , Infestações por Ácaros/prevenção & controle , Infestações por Ácaros/veterinária , Infestações por Ácaros/parasitologia
19.
Parasit Vectors ; 16(1): 244, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37475041

RESUMO

BACKGROUND: Histomonas meleagridis can infect chickens and turkeys. It uses the eggs of the cecal worm Heterakis gallinarum as a vector and reservoir. Litter beetles (Alphitobius diaperinus) and other arthropod species have been implicated as potential vectors, but little information about other arthropod species as potential vectors is known. METHODS: Four broiler breeder pullet farms were sampled every 4 months. On each farm, three types of traps were set inside and outside two houses. Trapped arthropod specimens were morphologically identified at order level and grouped into families/types when possible. Selected specimens from abundant types found both inside and outside barns were screened for H. meleagridis and H. gallinarum by qPCR. RESULTS: A total of 4743 arthropod specimens were trapped. The three most frequently encountered orders were Diptera (38%), Coleoptera (17%), and Hymenoptera (7%). Three hundred seventeen discrete types were differentiated. More arthropods were trapped outside than inside. Alpha diversity was greater outside than inside but not significantly influenced by season. The composition of the arthropod populations, including the insectome, varied significantly between trap location and seasons. Up to 50% of litter beetles tested positive for H. meleagridis DNA 4 months after an observed histomonosis outbreak. Sporadically litter beetles were positive for H. gallinarum DNA. Thirteen further arthropod types were tested, and specimens of four Dipteran families tested positive for either one or both parasites. CONCLUSIONS: This study describes the insectome in and around broiler breeder pullet farms and identifies new potential vectors of H. meleagridis through qPCR. The results show a limited but present potential of arthropods, especially flies, to transmit histomonosis between farms.


Assuntos
Doenças das Aves Domésticas , Infecções Protozoárias em Animais , Infecções por Protozoários , Trichomonadida , Animais , Feminino , Aves Domésticas , Galinhas/parasitologia , Fazendas , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/parasitologia , Perus/parasitologia , Trichomonadida/genética , Infecções Protozoárias em Animais/epidemiologia
20.
Parasit Vectors ; 16(1): 241, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468981

RESUMO

BACKGROUND: The apicomplexan parasites Eimeria spp. are the causative agents of coccidiosis, a disease with a significant global impact on the poultry industry. The complex life cycle of Eimeria spp. involves exogenous (sporogony) and endogenous (schizogony and gametogony) stages. Unfortunately, the genetic regulation of these highly dynamic processes, particularly for genes involved in specific developmental phases, is not well understood. METHODS: In this study, we used RNA sequencing (RNA-Seq) analysis to identify expressed genes and differentially expressed genes (DEGs) at seven time points representing different developmental stages of Eimeria tenella. We then performed K-means clustering along with co-expression analysis to identify functionally enriched gene clusters. Additionally, we predicted apicomplexan AP2 transcription factors in E. tenella using bioinformatics methods. Finally, we generated overexpression and knockout strains of ETH2_0411800 to observe its impact on E. tenella development. RESULTS: In total, we identified 7329 genes that are expressed during various developmental stages, with 3342 genes exhibiting differential expression during development. Using K-means clustering along with co-expression analysis, we identified clusters functionally enriched for oocyte meiosis, cell cycle, and signaling pathway. Among the 53 predicted ApiAP2 transcription factors, ETH2_0411800 was found to be exclusively expressed during sporogony. The ETH2_0411800 overexpression and knockout strains did not exhibit significant differences in oocyst size or output compared to the parental strain, while the resulting ETH2_0411800 knockout parasite showed a relatively small oocyst output. CONCLUSIONS: The findings of our research suggest that ETH2_0411800 is not essential for the growth and development of E. tenella. Our study provides insights into the gene expression dynamics and is a valuable resource for exploring the roles of transcription factor genes in regulating the development of Eimeria parasites.


Assuntos
Coccidiose , Eimeria tenella , Eimeria , Doenças das Aves Domésticas , Animais , Eimeria tenella/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Perfilação da Expressão Gênica , Eimeria/genética , Regulação da Expressão Gênica , Coccidiose/veterinária , Coccidiose/parasitologia , Galinhas/parasitologia , Doenças das Aves Domésticas/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...